Khi \(m=1\) ta có \(x^2+2x-4=0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-4\end{matrix}\right.\)
Gọi \(\left\{{}\begin{matrix}x_3=\frac{x_1}{x_2-1}\\x_4=\frac{x_2}{x_1-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}\\x_3x_4=\frac{x_1x_2}{\left(x_1-1\right)\left(x_2-1\right)}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-14\\x_3x_4=\frac{x_1x_2}{x_1x_2-\left(x_1+x_2\right)+1}=4\end{matrix}\right.\)
Theo Viet đảo, \(x_3;x_4\) là nghiệm của: \(x^2+14x+4=0\)