Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vi Lê Bình Phương

Cho phương trình \(x^2-2\left(m-1\right)x+2m-5=0\)

a. CM rằng pt có 1 nghiệm phân biệt

b. Tìm giá trị m để phương trình luôn có 2 nghiệm x1. x2 thỏa mãn điều kiện

\( \left(m_1^2-2mx+2m-1\right)\left(x_2^2-2mx_2+2m-1\right)< 0\)

KZ
22 tháng 10 2017 lúc 21:36

a) một nghiệm phan biệt á ?? =))

(nếu là pt có 2 n0 phân biệt) :

\(\Delta=4\left(m-1\right)^2-2\left(2m-7\right)=4m^2-16m+24\)

pt có 2 n0 pb \(\Leftrightarrow\Delta>0\Leftrightarrow m\in R\)

=> pt luôn có 2 n0 pb

b) theo định lí Viet(tell- hãy nói theo cách của bạn):

\(\left\{{}\begin{matrix}x_1+x_2=2m-5\\x_1x_2=2\left(m-1\right)\end{matrix}\right.\)

\(\left(x_1^2-2mx_1+2m-1\right)\left(x_2^2-2mx_2+2m-1\right)< 0\)

\(\left(x_1x_2\right)^2-2mx_1x_2\left(x_1+x_2\right)+\left(2m-1\right)\left(x_1+x_2\right)^2-2\left(2m-1\right)x_1x_2+4m^2x_1x_2-4m^2\left(x_1+x_2\right)+2m\left(x_1+x_2\right)+4m^2-4m+1< 0\)

thay vào rồi xử tiếp


Các câu hỏi tương tự
Vi Lê Bình Phương
Xem chi tiết
KYAN Gaming
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Chii Phương
Xem chi tiết
sky12
Xem chi tiết
KYAN Gaming
Xem chi tiết
Limited Edition
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Bánh Mì
Xem chi tiết