ĐK: \(\left\{{}\begin{matrix}2x^2+2x-6>0\\2x^2-5x+4>0\\mx-5>0\end{matrix}\right.\)
Khi đó pt tương đương:
\(2log_{mx-5}\left(x^2+2x-6\right)=2log_{mx-5}\left(2x^2-5x+4\right)\)
\(\Leftrightarrow x^2+2x-6=2x^2-5x+4\)
\(\Leftrightarrow x^2-7x+10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Thay 2 nghiệm vào 2 điều kiện đầu đều thỏa mãn
\(\Rightarrow\) pt có nghiệm duy nhất khi và chỉ khi có đúng 1 nghiệm thỏa mãn \(mx-5>0\)
TH1: \(\left\{{}\begin{matrix}2m-5>0\\5m-5\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m\le1\end{matrix}\right.\) (ko có m thỏa mãn)
TH2: \(\left\{{}\begin{matrix}5m-5>0\\2m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow1< m\le\frac{5}{2}\)