Thay \(t=3\) vào pt trên :
\(\Rightarrow\dfrac{2}{5-3}-a-3=2a\left(a+2\right)\)
\(\Rightarrow1-a-3-2a^2-4a=0\)
\(\Rightarrow-2a^2-5a+1=0\)
\(\Rightarrow\left\{{}\begin{matrix}a_1=\dfrac{-5+\sqrt{33}}{4}\\a_2=\dfrac{-5-\sqrt{33}}{4}\end{matrix}\right.\)
Thay \(t=3\) vào pt trên :
\(\Rightarrow\dfrac{2}{5-3}-a-3=2a\left(a+2\right)\)
\(\Rightarrow21-a-3-2a^2-4a=0\)
\(\Rightarrow-2a^2-5a+18=0\)
\(\Rightarrow\left\{{}\begin{matrix}a_1=2\\a_2=-\dfrac{9}{2}\end{matrix}\right.\)
Vậy để pt có \(t=-3\) là nghiệm thì \(a=2\) và \(a=-\dfrac{9}{2}\)