a, \(ĐKXĐ:x-4\ne0< =>x\ne4\)
b, Ta có: \(B=1\\ < =>\dfrac{\left(x^2-8x+16\right)}{x-4}=1\\ < =>\dfrac{\left(x-4\right)^2}{x-4}=1\\ < =>x-4=1\\ =>x=1+4=5\left(TMĐK\right)\)
Vậy: Nếu B=1 thì x=5.
c, Rút gọn B
\(B=\dfrac{x^2-8x+16}{x-4}=\dfrac{\left(x-4\right)^2}{x-4}=x-4\)
a) Để phân thức B xác định thì \(x-4\ne0\Leftrightarrow x\ne4\)
b) Để B = 1
=> \(\dfrac{x^2-8x+16}{x-4}=1\)
<=> \(\dfrac{\left(x-4\right)^2}{x-4}=1\)
=> \(x-4=1\)
<=> \(x=4+1\)
<=> \(x=5\)
c) \(B=\dfrac{x^2-8x+16}{x-4}\)
ĐKXĐ: \(x-4\ne0\Leftrightarrow x\ne4\)
=> \(B=\dfrac{x^2-8x+16}{x-4}\)
<=> \(B=\dfrac{\left(x-4\right)^2}{x-4}\)
<=> \(B=x-4\)