Cho phân số :\(A=\dfrac{3n-5}{2n+1}\left(n\in Z;n\ne\dfrac{-1}{2}\right)\)
a) Tìm n để A là phân số tối giản.
b) Tìm GTLN, GTNN của A.
Bài 1 : Cho A = \(\dfrac{n+2}{n-5}\)(n \(\in\) Z, n \(\ne\) 5). Tìm n để A \(\in\) Z
Bài 2 : CMR các phân số sau tối giản:
a) \(\dfrac{n+1}{2n-3}\) ; b) \(\dfrac{2n+3}{4n+8}\) ; c) \(\dfrac{3n+2}{5n+3}\) ; d) \(\dfrac{n+1}{2n+3}\) ; e) \(\dfrac{2n+3}{2n+8}\)
Bài 1 : Tìm số nguyên n để cho \(\frac{2n-1}{3n+2}\) rút gọn được
Bài 2 : Cho A = \(\frac{10n}{5n-3}\) ( n \(\in\) Z )
a) Tìm n để A có giá trị nguyên
b) Tìm giá trị lớn nhất của A
1. Cho phân số: A = \(\frac{2n-3}{n-2}\) ( n ϵ Z; n\(\ne\) 2)
a) Tìm n để A nguyên
b) Chứng minh rằng phân số A là phân số tối giản.
2. Cho P và P + 4 là các số nguyên tố với P > 3. Chứng minh P - 2014 là hợp số .
Giúp mk với mấy bạn
Cho \(A=\dfrac{n+2}{n-1}\)
a) Tìm \(n\in Z\) để A có giá trị phân số.
b) Tìm \(n\in Z\) để A có giá trị nguyên.
c) Tìm \(n\in Z\) để A có GTNN và GTLN.
Cho phân số : A =\(\dfrac{6n+5}{3n+2}\) ( n \(\in\) Z ; n \(\ne\) \(-\dfrac{2}{3}\) )
a) Tìm n để A có giá trị là số nguyên
b) Chứng tỏ rằng phân số A là phân số tối giản
Bài 1: Cho \(A=\frac{12n-5}{5n+1}\) (n\(\in\) Z)
a. Tìm n để A \(\in\) Z
b. Tìm n để A tối giản
c. Tìm n để A rút gọn được
Bài 2: CMR các phân số sau là tối giản ( n \(\in\) N*)
a. \(\frac{14n+3}{21n+4}\)
b. \(\frac{12n+1}{30n+2}\)
c. \(\frac{3n-2}{4n-3}\)
d. \(\frac{4n+1}{6n+1}\)
cho :
\(\dfrac{\dfrac{2}{3}n+\dfrac{1}{5}\cdot\dfrac{3}{7}+\dfrac{1}{7}\cdot\dfrac{3}{10}+\dfrac{1}{3}n-\dfrac{1}{14}+\dfrac{33}{35}}{\dfrac{2}{3}\cdot\left(3n+\dfrac{3}{5}\right)\dfrac{14}{15}+\dfrac{1}{3}}\)
a, Hãy rút gọn A.
b,Tìm giá trị của A khi n =\(\dfrac{-1}{5}\)
c,Tìm n để A nhận giá trị là \(\dfrac{2}{5}\)
d,Tìm n để 2A thuộc Z
Cho phân số \(A=\frac{n-5}{n+1}\) (n thuộc Z, n khác -1)
a, Tìm n để A có trị là số nguyên
b, Tìm n để A là phân sô tôi giản