\(linh=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x-3}}+\dfrac{4}{\sqrt{x}-3}\)
Nên \(4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nên \(\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\\\sqrt{x}-3=2\\\sqrt{x}-3=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\\\sqrt{x}=5\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\\x=25\\x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}\sqrt{x}-3=4\\\sqrt{x}-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=7\\\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=49\\x\in\varnothing\end{matrix}\right.\)