Cho Parabol (P) :y=-2x\(^2\) và đường thẳng (d):y=ax+a-2 (a khác 0). Tìm số nguyên a sao cho (d) cắt (P) tại hai điểm phân biệt A,B thỏa mãn AB=\(\sqrt{5}\)
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Gọi (d) là đường thẳng đi qua điểm \(C\left(\dfrac{3}{2};-1\right)\) và có hệ số góc m
a) Viết phương trình của (d)
b) Chứng tỏ rằng qua điểm C có hai đường thẳng (d) tiếp xúc với \(\left(P\right):y=ax^2\left(a\ne0\right)\) và vuông góc với nhau
trong mặt phẳng tọa độ oxy cho parabol (p) y=x^2 và hai đường thẳng (d): y=m; (d'):y=m^2 (với 0<m<1). Đường thẳng (d) cắt parabol (P) tại hai điểm A,B; đường thẳng (d') cắt parabol (P) tại hai điểm phân biệt C,D (với hoành độ điểm A và D là số âm). Tìm m sao cho diện tích hình thang ABCD gấp 9 lần diện tích tam giác OCD
Cho (P) y = 2x2 và đường thẳng (d) y = 4x + m . Tìm giá trị m lớn nhất để đường thẳng (d) cắt parabol P tại hai điểm A, B và cắt trục tung tại M sao cho MA = 3MB
cho parabol (P):y=x\(^2\) và đường thẳng (d):y=2x-m+3 tìm m để (P) và (d) cắt nhau tại hai điểm nằm về hai phía của trục tung
1, Giải phương trình :\(2x^4+x^2-6=0\)
2, Cho parabol (P) :\(y=x^2\) và đường thẳng (d) : y=mx+2
a, Với m=-1 : vẽ parabol (P) và đường thẳng (d) trên cùng 1 hệ trục tọa độ .Tìm tọa độ các giao điểm của parabol (P) và đường thẳng (d)
b, Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) sao cho \(x_1-2x_2=5\)
Cho Parabol (P):y=2x^2 và đường thẳng (d):y=-x+6. Biết (d) cắt (P) tại hai điểm phân biệt A(x1,y1); B(x2,y2) với x1<x2. Tính 4x2+y1
trong mặt phẳng toạ độ (Oxy), cho parabol (P) có phương trình y=x2 và đường thẳng d có phương trình y=kx+1 (k là tham số). TÌm K để (P) cắt d tại 2 điểm phân biệt M và N sao cho \(MN=2\sqrt{10}\)