a: \(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b: \(P-5=\dfrac{2x-3\sqrt{x}+2}{\sqrt{x}}>0\)
=>P>5
a: \(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b: \(P-5=\dfrac{2x-3\sqrt{x}+2}{\sqrt{x}}>0\)
=>P>5
b)tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức P=\(\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1-\sqrt{x}}{\sqrt{x}}:1+\dfrac{2}{\sqrt{x}}\)với x nhỏ hơn 0
1.Rút gọn P
2.Tính giá trị cuả P biết x=2019 -2\(\sqrt{2018}\)
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
Cho P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn P
b)Tìm các giá trị nguyên của x để P < -0,5
A=\(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
a) Với mọi giá trị của x làm A có nghĩa , chứng minh biểu thức \(\dfrac{8}{A}\) chỉ nhận đúng một giá trị nguyên
Cho biểu thức :
A = \(\left(\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right)\)
a) Rút gọn A
b) Tĩnh giá trị của A khi x = \(4-2\sqrt{3}\)
c) So sánh A với 1
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Bài 1: Giải pt
a) \(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\)
b) \(\sqrt{4x^2-4x+1}=2x-1\)
Bài 2: Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) So sánh giá trị của A với \(\dfrac{1}{3}\)
Bài 3: Thực hiện phép tính
a) \(\left(\sqrt{32}-2\sqrt{18}\right).\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
Bài 4: Giải pt
a) \(\sqrt{x^2-2x+1}=x+2\)
b) \(\sqrt{3x+2}=\sqrt{x+5}\)
Bài 5: Cho biểu thức
A= \(\left(\dfrac{3\sqrt{x}+x}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
a) Tìm ĐKXĐ và rút gọn A
b) Chứng minh rằng A<1