a: ĐKXĐ: x<>2; x<>-2; x<>0; x<>3
b: \(P=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\left(\dfrac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left(\dfrac{-\left(x+2\right)}{\left(x-2\right)}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
c: |x-5|=2
=>x-5=2 hoặc x-5=-2
=>x=3(loại) hoặc x=7(nhận)
KHi x=7 thì \(S=\dfrac{-4\cdot7^2\left(7-2\right)}{\left(7+2\right)\left(7-3\right)}=\dfrac{-245}{9}\)