Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c ạ !!!
Cho điểm M thuộc cạnh a của tam giác ABC vuông tại A Vẽ đường tròn O đường kính MC cắt BC tại E D BM cắt đường tròn O tại D tia AD cắt đường tròn O tại E AE cắt đường tròn O tại f Chứng minh câu a tứ giác ABCD nội tiếp K là phân giác góc s a b c a b c d đồng quy câu d d m là phân giác góc ade câu a m là tâm đường tròn nội tiếp tam giác hde f d f song song AB
trên đường tròn O lấy ba điểm A,B,C sao cho tam giác ABC nhọn. gọi AD,BE,CF là các đường cao của tam giác ABC; Đường thẳng EF cắt BC tại P.Qua D kẻ đường thẳng song song với đường thẳng EF cắt đường thẳng AC và AB lần lượt tại Q và R, M là trung điểm của BC.
a, CM tứ giác BQCR là tứ giác nội tiếp
b, CM hai tam giác EPM và DEM đồng dạng
Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho số đo cung AB = 60o; số đo cung BC = 90o và số đo cung CD = 120o.
a) Tứ giác ABCD là hình gì?
b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác ABCD theo R.
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AH (H thuộc BC), gọi M là điểm chính giữa cung AC. Tia BM cắt AC tại E cắt tiếp tuyến tại C của (O) tại F. OM cắt AC tai K. 1) Chứng minh tứ giác AHOK nội tiếp. 2) Chứng minh tam giác CEF cân 3) Chứng minh OM tiếp xúc với đường tròn ngoại tiếp tam giác AOB
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
Cho đường tròn tâm (O), bán kính R ngoại tiếp đa giác dêdu của đường tròn A. Tính bán kính của đường tròn ngoại tiếp đa giác đó (A;R) trong trường hợp a, đa giác là tam giác đều b, đa giác là hình vuông c, đa giác là lục giác đều
a) Vẽ tam giác đều ABC cạnh a = 3 cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O ; R).
Trong đường tròn (O; R) cho một dây AB bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp (điểm C và điểm A ở cùng một phía đối với BO). Tính các cạnh của tam giác ABC và đường cao AH của nó theo R