Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi Q là trung điểm của BC và các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh : AH = 2OQ
b) Chứng minh rằng nếu : AB + AC = 2BC thì sinB + sin C = 2sin A
c) Cho BC = \(R\sqrt{2}\), chứng minh : AE * FH + AF * HE = \(R^2\sqrt{2}\)
Cho đường tròn tâm O , bán Kính R . Dây BC < 2R cố định . Điểm A chạy trên cung lớn BC sao cho tam giác ABC nhọn . Kẻ 3 đường cao AD , BE , CF cắt nhau tại H . Chứng minh : a) AEFH nội tiếp . Xác định tâm I của đường tròn ngoại tiếp .
b) Chứng minh khi A chạy trên cung BC lớn thì tiếp tuyến tại E của đường tròn tâm I luôn đi qua 1 điểm cố định
c,Tìm vị trí A thuộc cung lớn BC để diện tích tam giác AEF lớn nhất.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). AD, BE, CF là các đường cao cắt nhau tại H. Vẽ đường kính AK của đường tròn (O) CM tam giác ADB đồng dạng tam giác ACK và AD = AC.AB/ 2R
BC là 1 dây cung của (O;R) BC khác 2R. Điểm A di động trên cung lớn BC sao cho điểm O luôn nắm trong tam giác ABC. Các đường cao AD, BE, CF của tam giác ABC đồng quy tại H
a) Gọi A' là trung điểm của BC. Chứng minh: AH = 2OA'
b) Gọi \(A_1\) là trung điểm của EF. Chứng minh: \(R.AA_1=AA'.OA'\)
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
1.Cho nửa đường tròn (O) có đường kính BC và dây cung EF sao cho các điểm F,C nằm khác phía so với đường thẳng BE. Hai dây cung BE,CF cắt nhau tại điểm H; tia BF và CE cắt nhau tại A. Đường thẳng AH cắt đường thẳng BC tại D. Chứng minh 2. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC với đường tròn (O) . Trên đoạn OB lấy điểm (I khác B, I khác O). Đường thẳng AI cắt đường tròn (O) tại điểm D và E( D nằm giữa A và E). Chứng minh =AD.AE
cho tam giac abc nhon noi tiep duong tron (o;r) duong cao ad;be;cf cat nau tai h ke duong kinh ag goi y la trung diem cua bc chung minh 4 diem bcef nam tren cung 1 duong tron
Cho tam giác ABC (AB<AC) có 3 góc nội tiếp đường tròn (O;R), hai đường cao BE, CF cắt nhau tại H
a) CM: tứ giác AEHF nội tiếp đường tròn
b) CM: FA.FB= FC.FH
c) CM: OA vuông góc EF
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng