Từ điểm A ở ngoài đường tròn (O; R) sao cho OA = 3R vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm) a) Tính độ dài của AB theo R. b) Kẻ tiếp tuyến thứ hai AC với đường tròn (O) (C là tiếp điểm). b.1. Tính số đo góc AOB (làm tròn kết quả đến phút), từ đó suy ra số đo góc BOC. b.2. Gọi H là giao điểm của BC và OA. Chứng minh BC vuông góc với OA tại H và tính độ dài của OH theo R.
Cho đường tròn (O;3cm) và điểm M sao cho OM=6cm. Từ điểm M kẻ tiếp tuyến MA, MB với đường tròn (O).
a) Chứng minh rằng OM vuông góc với AB.
b) Tính số đo góc AMB
Cho đường tròn (O;3cm) và điểm M sao cho OM=6cm. Từ điểm M kẻ tiếp tuyến MA, MB với đường tròn (O).
a) Chứng minh rằng OM vuông góc với AB.
b) Tính số đo góc AMB
cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Cho đường tròn (O;3cm) và điểm M sao cho OM=6cm. Từ điểm M kẻ tiếp MA, MB với đường tròn (O).
a) Chứng minh rằng OM vuông góc với AB.
b) Tính số đo góc AMB
Cho đường tròn tâm O, điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MB và MC với đường tròn ( B,C là 2 tiếp điểm). OM cắt BC tại I a) Chứng minh M,B,O,C cùng thuộc một đường tròn b) Kẻ đường kính BD của O. Cm MO vuông góc với BC và MO // CD c) Nối MD cắt (O) tại H. Cm MH.MD=MI.MO và góc MIH = góc OHD
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
cho đường tròn tâm o. từ điểm m nằm ngoài đường tròn tâm o kẻ tiếp tuyến ma của đường tròn tâm o. từ a kẻ đường thẳng vuông góc với om cắt om và đường tron tâm o lần lượt tại h và b. chứng minh bm là tiếp tuyến đường tròn tâm o. kẻ đường kính ac, mc cắt đường tròn tâm o tại d, kẻ di vuông góc với ac, di cắt ab tại g ,gọi e là trung điểm am, chứng minh c f e thẳng hàng