Từ điểm A nằm ngoài (O) kẻ các tiếp tuyến AB và AC với đường tròn. Gọi CD là dây cung của (O) song song với AB. E là giao điểm của AD với đường tròn. M là giao điểm của CE và AB. Chứng minh: M là trung điểm của AB
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
Cho đường tròn (O)đường kính AB. Trên tia đối của tia AB lấy điểm C
(C không trùng với B). Kẻ tiếp tuyến CD với đường tròn (O) (D là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CD tại E.
a) Chứng minh rằng tứ giác AODE nội tiếp.
b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn (O) (K không trùng với B). Chứng minh \(E\widehat{H}K=K\widehat{B}A\)
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Trên đường tròn (O) đường kính AB lấy hai điểm M, E theo thứ tự A, M, E, B ( hai điểm M, E khác hai điểm A, B ). AM cắt BE tại C, AE cắt BM tại D. Gọi N, H lần lượt là giao điểm của đường thẳng CD với EM, AB
a) Chứng minh MCED là một tứ giác nội tiếp
b) Gọi I là trung điểm của CD, chứng minh IM là tiếp tuyến của (O) và DN.CH=DH.CN
c) Từ C kẻ tiếp tuyến CQ và CK với đường tròn (O) ( Q, K là các tiếp điểm ). Chứng minh Q, D, K thẳng hàng
Cho (O;R), các đường kính AB, CD vuông góc với nhau. Gọi I là trung điểm của OB, tia CI cắt (O) ở E, EA cắt CD ở K. Tính DK
Cho đường tròn tâm O đường kính AB,dây CD vuông góc với AB tại H . Trên tia đối của tia CB lấy một điểm M ở ngoài đường tròn O,kẻ MB cắt đường tròn tại E ,AB cắt CD tại F
a,Chứng minh tứ giác BÈH nội tiếp đường tròn.
b, Gọi K là giao điểm của BF vs đg tròn O. C/minh rằng EA là tia phân giác của góc HEK
c, C/m : MD•FC=MC•FD
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định