Câu 8 (2,5 điểm). Trên đường tròn (O) đường kính AB = 2R lấy di*k_{m}*C sao cho AC = R và lấy điểm D bất kì trên cung nhỏ BC (D khác C và B). Gọi E là giao điểm của AD và BC, H là hình chiếu của E trên AB. a) Chứng minh tứ giác EDBH là tứ giác nội tiếp. b) Chứng minh HE là tia phân giác của góc CHD. c) Xác định vị trí của điểm D để chu vị tử giác ABDC lớn nhất.
Cho nửa đường tròn (O; R) ,dây AB = R √3 cố định không đi qua tâm. Gọi C là điểm thuộc cung lớn AB và AC. Gọi I là giao điểm của BN và CM. Dây MN cắt dây AB và AC lần lượt tại H và K. Tính số đo góc ACB và chứng minh tứ giác BMHI nội tiếp đường tròn.
Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC.
1) Chứng minh tứ giác AMON và tứ giác AOHN nội tiếp.
2) MN cắt AO tại điểm I. Chứng minh rằng AI. AO= AM2
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
cho nửa đường tròn (0) đường kính AB, vẽ bán kình CO vuông góc với AB . M là 1 điểm bất kì trên cung AC .BM cắt AC tại H, gọi K là chân đường vuông góc kẻ từ H đến AB a) chứng minh tứ giác BCHK nội tiếp c) kẻ CP vuông góc với BM. trên đoạn BM lấy điểm E sao cho BE=AM chứng minh CM*MP= Pe
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho nữa đường tròn (O;R) đường kính AB. Lấy điểm C là điểm chính giữa của cung AB, N là trung điểm của dây cung CB. Đường thẳng AN cắt nữa đường tròn (O) tại M. Từ C kẻ CI vuông góc với AM tại I.
a) Chứng minh tứ giác ACIO nội tiếp.
b) Chứng minh góc MOI = góc CAI.
c) Tính bán kính đường tròn ngoại tiếp tam giác IOM theo R.
cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF