Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC
2. Cho nửa đường tròn(O,R) đường kính AB . Từ một điểm M trên nửa đường tròn , vẽ tiếp tuyến xy .Kẻ AD và BC cùng vuông góc với xy (với D và C thuộc xy)
a, chứng minh rằng MC=MD và AD+BC=2R
b, chứng minh đường tròn đường kính CD tiếp xúc với AB
c, tìm vị trí điểm M trên nửa đường tròn (O) sao cho MA.MB đạt giá trị lớn nhất
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Đường thẳng AO cắt (O) tại điểm M khácA. Đường thẳng qua C vuông góc với AB cắt (O) tại N khác C. Gọi K là giao của MN với BC.a) Chứng minh tam giác KCN cânb) Chứng minh OK vuông góc với BMc) Khi tam giác ABC cân tại A, 2 tiếp tuyến của (O) tại M và N cắt nhau tại P. Chứng minh P, B, Othẳng hàng
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB