Chứng minh rằng với mọi số tự nhiên n ta có \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) chia hết cho 2
tìm số nguyên tố n thỏa mãn 2n+7 chia hết cho 12n+1
Cho x,y thuộc N sao cho
x + 1 và y + 2013 chia hết cho 6
CMR: \(4^x+x+y⋮6\)
Cho số nguyên tố n, biết n thỏa mãn \(n^2\)+\(3^n\)-13 chia hết cho n + 3 vậy giá trị nhỏ nhất của n là ....
1. Tìm số \(a\in N\) lớn nhất thỏa mãn a + 495 chia hết cho a và 195 - a chia hết cho a.
2. Tìm STN n sao cho \(\left(3n+1\right)⋮\left(2n+3\right)\)
tìm số tự nhiên n sao cho:
a) n+2 chia hết cho n-1
b)2n+7 chia hết cho n+1
c)2n+1 chia hết cho 6-n
d)3n chia hết cho 5-2n
e)4n+3 chia hết cho 2n+6
1.
a) Cho A = \(1+3+3^2+3^3+3^4+...+3^{2012}\)
và B = \(3^{2012}:2\)
Tính B - A
b) Tìm hai số nguyên tố x và y sao cho :
\(x^2-6y^2=1\)
c) Cho B = \(\left(1.2.3....2012\right).\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
CMR: B chia hết cho 2013
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)