Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nam Dương

Cho n \(\in\) N; n \(\ge\) 2. CMR:

\(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)

Akai Haruma
15 tháng 8 2018 lúc 11:19

Lời giải

Với mọi $n\in\mathbb{N}$ ta có:

\(\frac{1}{\sqrt{1}}> \frac{1}{\sqrt{n}}\)

\(\frac{1}{\sqrt{2}}> \frac{1}{\sqrt{n}}\)

.....

Do đó:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}> \underbrace{\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}}_{\text{n số}}=\frac{n}{\sqrt{n}}=\sqrt{n}\)

(chứng minh xong vế 1)

Vế 2:

\(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+...+\frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{0}+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\frac{\sqrt{1}-\sqrt{0}}{1-0}+\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n}-\sqrt{n-1}}{n-(n-1)}\)

\(=\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}=\sqrt{n}\)

\(\Rightarrow \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\) (đpcm)

Vậy....


Các câu hỏi tương tự
Đặng Dung
Xem chi tiết
Lee Seung Hyun
Xem chi tiết
Nguyễn  Phạm Hoàng trang
Xem chi tiết
Thành Nguyễn
Xem chi tiết
nguyen manh duc
Xem chi tiết
Dương Thị Thu Ngọc
Xem chi tiết
Hương Thanh
Xem chi tiết
Trần Nguyễn Thái Hà
Xem chi tiết
Trần Nguyễn Thái Hà
Xem chi tiết