câu 1: a/ nêu cách tính nhẩm \(997^2\)
b/ tính tổng cái chữ số của A biết
\(\sqrt{A}=999...96\) (100 số 9)
câu 2 : a/ cmr \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\dfrac{1}{n}-\dfrac{1}{\sqrt{n}+1}\)
b/ tính M= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
2) a) \(VT=\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{1}{\sqrt{n+1}.\sqrt{n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}\)
\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}=VP\left(đpcm\right)\)
b) Áp dụng công thức câu a), ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
câu 1a
9972=9972-9+9
=(997-3)(997+3)+9
=1000.994+9=994000+9
=994009