cho p=\(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right)\div\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a) rút gọn p
b)tìm GTLN
lm nhanh giúp mk nhé
Cho A =[ \(\left\{\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right\}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\)] :\(\dfrac{\sqrt{x^3+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với x>0; y>0
a) Rút gọn
b) Biết xy = 16. Tìm các giá trị x, y để A có GTNN. Tìm GTNN đó
Help me...........
Thứ 5 này thi phòng rồi, tui muốn ôn mà không niết. chỉ tui với
Cho biểu thức \(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}\)
a, Tìm điều kiện xác định và rút gọn M
b. Tính giá trị của M ,biết rằng \(x=\left(1-\sqrt{3}\right)^2\)và \(y=3-\sqrt{8}\)
Cho \(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
Rút gọn B
Tính B với \(x=\dfrac{2}{2+\sqrt{3}}\)
tính Max
Rút gọn biểu thức
a,\(\frac{1}{\left(2\sqrt{x}-2\right)}-\frac{1}{\left(2\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(1-x\right)}\)
b, \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
c, \(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
cho x,y là các số thực dương phan biệt thõa mãn \(\dfrac{1}{1+x}\)+ \(\dfrac{1}{1+y}\)=\(\dfrac{2}{1+\sqrt{xy}}\). Tính giá trị biểu thức A= \(\dfrac{1}{1+x}\)+ \(\dfrac{1}{1+y}\)- \(\dfrac{1}{1+\sqrt{xy}}\).
Cho A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a, Rut gon bieu thuc A
b, Tinh gia tri cua A khi x = \(\dfrac{1}{1+\sqrt{2}}\)
c, Tim Max A
Cho biểu thức: A= \(\dfrac{\sqrt{x^3}}{\sqrt{xy}-2y}\) + \(\dfrac{2x}{2\sqrt{xy}+2\sqrt{y}-x-\sqrt{x}}\) * \(\dfrac{1-x}{1-\sqrt{x}}\)
a) Rút gọn A
b) Tìm các số nguyên dương x để y= 625 và A<0,2
P=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
1 rút gọn
2 c/m P\(\ge\)0