a, Cho hàm số y=f(x). Tính f(0);f(-1/3);f(5/2);f(a+b)
b, Cho hàm số y=g(x). Tính g(1);g(-1/2);g(-2);g(a-b)
Cho hàm số y=f(x)=2x-3. X lấy giá trị thực bất kì x1, x2 sao cho x1 < x2. Chứng tỏ f(x1) < f(x2). Kết luận về tính biến thiên của hàm số
cho hàm số y=f(x)=2x. Tính f(-2), f(0), f(1) và vẽ đồ thị hàm số
xác định hàm số f(x) biết rằng f(x-1)=3x-5
7. Cho hàm số \(y=f\left(x\right)=3x\)
Cho x 2 giá trị bất kì x1, x2 sao cho x1 < x2
Hãy CM \(f\left(x_1\right)< f\left(x_2\right)\) rồi rút ra kết luận hàm số đã cho đồng biến trên R
Cho hàm số f(x)=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
a) tìm tập xác định của hàm số
b) tính \(f\left(4-2\sqrt{3}\right)\)và \(f\left(a^2\right)\) với a<-1
c) tìm x nguyên để f(x) là số nguyên
d) Tìm x sao cho f(x)=f\(\left(x^2\right)\)
Cho hàm số \(y=f\left(x\right)=4-\dfrac{2}{5}x\) với \(x\in\mathbb{R}\)
Chứng minh rằng hàm số đã cho nghịch biến trên \(\mathbb{R}\)
Tìm tập xác định của hàm số.
a) f(x)=x+1 / √x - 2
b) f(x)=∛x-2 / √x-3
c) f(x)=x^2+x-5 / |x-5|
d) f(x)=√x-4 / √x+3 - 5
a) Cho hàm số :
\(y=f\left(x\right)=\dfrac{2}{3}x\)
Tính :
\(f\left(-2\right);f\left(-1\right);f\left(0\right);f\left(\dfrac{1}{2}\right);f\left(1\right);f\left(2\right)\)
b) Cho hàm số :
\(y=g\left(x\right)=\dfrac{2}{3}x+3\)
Tính :
\(g\left(-2\right);g\left(-1\right);g\left(0\right);g\left(\dfrac{1}{2}\right);g\left(1\right);g\left(2\right)\)
c) Có nhận xét gì về giá trị của hai hàm số đã cho ở trên khi biến x lấy cùng một giá trị ?