\(\)\(M=3+3^2+....+3^{2016}\)
=>\(3M=3.\left(3+3^2+...+3^{2016}\right)\)
=>\(3M=3^2+3^3+...+3^{2017}\)
=>\(3M-M=\left(3^2+3^3+....+3^{2017}\right)-\left(3+3^2...+3^{2016}\right)\)
=>\(2M=3^{2017}-3\)
=>\(M=\dfrac{3^{2017}-3}{2}\)
Chúc Bạn Học Tốt!!!
M = 3 + 32 +...+ 32016
3M = 32 + 33 +...+ 32017
3M - M = (32 + 33 +...+ 32017) - (3 + 32 +...+ 32016)
2M = 32017 - 3
M = \(\dfrac{3^{2017}-3}{2}\)
Ta có: M= 3+ 32+.....+32016
3M= 32+ 33+......+ 32017
=> 3M-M=( 32+ 33+....+32017)-(3+ 32+...+32016)
=> 2M= 32017- 3=> M=\(\dfrac{3^{2017}-3}{2}\)
\(M=3+3^2+...+3^{2016}\)
\(\Rightarrow3M=3\left(3+3^2+...+3^{2016}\right)\)
\(3M=3^2+3^3+...+3^{2017}\)
\(\Rightarrow3M-M=2M=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+...+2^{1016}\right)\)
\(2M=3^{2017}-3\Leftrightarrow M=\dfrac{3^{2017}-3}{2}\)
vậy \(M=\dfrac{3^{2017}-3}{2}\)
\(M=3+3^2+...+3^{2016}\)
\(3M=3^2+3^3+...+3^{2017}\)
\(3M-M=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+...+3^{2016}\right)\)
\(2M=3^{2017}-3\)
\(M=\dfrac{3^{2017}-3}{2}\)