Từ = 0, ta có + = 0 => = -
Điều này chứng tỏ hai vectơ có cùng độ dài = , cùng phương và ngược hướng
Từ = 0, ta có + = 0 => = -
Điều này chứng tỏ hai vectơ có cùng độ dài = , cùng phương và ngược hướng
Cho \(\overrightarrow{a},\overrightarrow{b}\) là hai vectơ khác \(\overrightarrow{0}\). Khi nào có đẳng thức :
a) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Cho 3 vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) tuỳ ý. Chứng minh:
\(\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\). Dấu "=" xảy ra khi nào? Nêu bài toán tổng quát
Cho 2 vector \(\overrightarrow{a}\) và \(\overrightarrow{b}\) khác \(\overrightarrow{0}\). Khi nào các đẳng thức dưới đây xảy ra:
a) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}+\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
c) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
d) \(\left|\overrightarrow{a}\right|-\left|\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) sao cho \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\)
a) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{OB}=\overrightarrow{b}\). Chứng minh O là trung điểm của AB
b) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{AB}=\overrightarrow{b}\). Chứng minh \(O\equiv B\)
Cho ba điểm A,B,C. Mệnh đề nào sau đây đúng?
A. AB+BC=AC
B. \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=0\)
C. \(\overrightarrow{AB}-\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|-\left|\overrightarrow{BC}\right|\)
D. \(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ \(\overrightarrow{AB}+\overrightarrow{BC}\) và \(\overrightarrow{AB}-\overrightarrow{BC}\) ?
cho tam giác ABC đều, cạnh bằng 1. phát biểu nào đúng ? ( giải thích dùm mình)
a> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\sqrt{3}\)
b> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=0\)
c> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\)
d> \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=0\)
BÀI 1
Cho hình chữ nhật ABCD có AB = 8cm, AD = 6cm. Tìm tập hợp điểm M, N thỏa
a. \(\left|\overrightarrow{AO}-\overrightarrow{AD}\right|=\left|\overrightarrow{MO}\right|\)
b. \(\left|\overrightarrow{AC}-\overrightarrow{AD}\right|=\left|\overrightarrow{NB}\right|\)
BÀI 2
Cho hình vuông ABCD cạnh a. Tính độ dài các véc-tơ \(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|;\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\) theo a
Cho 4 điểm A,B,C,O phân biệt có độ dài 3 vecto \(\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}\) cùng bằng a và \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)
a) tính các góc AOB,BOC,COA
b)tính \(\left|\overrightarrow{OB}+\overrightarrow{AC}-\overrightarrow{OA}\right|\)