Cho \(\left(u_n\right)\) xác định bởi \(u_1=1\), \(u_{n+1}=\left(1+\dfrac{3}{n}\right)u_n+2-\dfrac{3}{n},n\ge1\)
CMR: mọi số hạng của \(\left(u_1\right)\) là các số nguyên.
Cho số thực dương \(x,\left(x\ne1,x\ne\dfrac{1}{2}\right)\) thỏa mãn \(log_x\left(16x\right)=log_{2x}\left(8x\right)\). Giá trị \(log_x\left(16x\right)\) bằng \(log\dfrac{m}{n}\) với \(m\) và \(n\) là các số nguyên dương và phân số \(\dfrac{m}{n}\) tối giản. Tổng \(m+n\) bằng?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ♥
Cho phương trình\(\log^{2_{\sqrt{2}}}\left(2x\right)-2\log_2\left(4^2\right)-8=0\left(1\right)\)Khi đó phương trình (1) tương đương với phương trình nào sau đây?
1. Có bao nhiêu cặp số nguyên dương \(\left(m,n\right)\) sao cho \(m+n\le10\) và ứng với mỗi cặp \(\left(m,n\right)\) tồn tại đúng 3 số thực \(\alpha\in\left(-1;1\right)\) thỏa mãn \(2\alpha^m=nln\left(\alpha+\sqrt{\alpha^2+1}\right)\)
A. 7
B. 8
C. 10
D. 9
2. Xét các số thực \(x,y\) thỏa mãn \(2^{x^2+y^2+1}\le\left(x^2+y^2-2x+2\right)4^x\) GTNN của biểu thức \(P=\frac{8x+4}{2x-y+1}\) gần nhất với số nào dưới đây?
A. 1
B. 2
C. 3
D. 4
Giúp em bài này với ạ. Em cảm ơn ạ.
\(\sqrt[3]{\left(x-1\right)^{\left(x-1\right)}}\)=\(\left(x-1\right)^{\sqrt[3]{\left(x-1\right)}}\) .
Cho phương trình \(\log_5\left(\log_4\left(\log_3\left(\log_2\left(x^3\right)\right)\right)\right)=\log_2\left(\log_3\left(\log_4\left(\log_5\left(x^2\right)\right)\right)\right)\)
giả sử tập xác định của phương tringf trên có dạng \(\left(-\infty;a\right)\cup\left(b;+\infty\right)\). Chọn khẳng đinh định đúng
a) \(a+b=0\) và nghiệm của phương trình là số chia hết cho 3.
b) \(a-b=0\) và nghiệm của phương trình là số chia hết cho 3.
c) \(a+b=0\) và nghiệm của phương trình là một số lập phương.
d) \(a+b=0\) và nghiệm của phương trình là một số bình phương.
Cho bất phương trình \(8^x+3x4^x+\left(3x^2+2\right)2^x\le\left(m^3-1\right)x^3+2\left(m-1\right)x\). Số các giá trị nguyên của tham số m để phương trình trên có đúng năm nghiệm nguyên dương phân biệt là?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ạ♥
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(\log5+\log\left(x^2+1\right)\ge\log\left(mx^2+4x+m\right)\) đúng với mọi \(x\)?
A. 0
B. 1
C. 2
D. 4