Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Gọi O và O' lần lượt là tâm của các hình bình hành ABCD và ABEF. Chứng minh rằng đường thẳng OO' song song với các mặt phẳng (ADF) và (BCE)
b) Gọi M và N lần lượt là trọng tâm của hai tam giác ABD và ABE. Chứng minh đường thẳng MN song song với mặt phẳng (CEF)
Cho tứ diện ABCD. Gọi \(G_1\) và \(G_2\) lần lượt là trọng tâm của các tam giác ACD và BCD. Chứng minh rằng \(G_1G_2\) song song với các mặt phẳng (ABC) và (ABD) ?
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Gọi O là giao điểm của AC và BD, O' là giao điểm của AE và BF
a) Chứng minh rằng OO' song song với hai mặt phẳng (ADF) và (BCE)
b) Gọi M và N lần lượt là trọng tâm của các tam giác ABD và ABE. Chứng minh rằng MN // (CEF) ?
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi G, G'lần lượt là trong tâm tam giác SCD và ABC. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (a) đi qua G song song với hai đường thẳng SB, AC.
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!!
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
Cho hình chóp SABCD đáy là hình bình hành ABCD,tâm O , G là trọng tâm tam giác SAB, M là trung điểm AB,E là điểm trên AD sao cho AD = 3 AE,, đường thẳng qua E song song AB cắt MC tại F , . I thuộc CD sao cho CI= 2 ID ,chứng minh GO // (SAI)
Cho tứ diện ABCD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (a) đi qua trọng tâm G của tam giác ABC và đồng thời song song với AD và BC