A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)
a, Rút gọn A
b, Tính giá trị của A khi x=4-2\(\sqrt{3}\)
1, A= \(\frac{\sqrt{x}+4}{\sqrt{x}-1}\) B= \(\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\left(x\ge0,x\ne1\right)\)
Tìm x để \(\frac{A}{B}\ge\frac{x}{4}+5\)biết B= \(\frac{1}{\sqrt{x}-1}\)
2, A= \(\frac{4\left(\sqrt{x}+1\right)}{25-x}\) B= \(\left(\frac{15-5x}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0,x\ne25\right)\)
Tìm giá trị nguyên của x để P= A.B đặt giá trị nguyên lớn nhất
GIÚP MK VỚI! THANKS
Rút gọn:
\(A=\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) với \(x\ge0;x\ne1\)
\(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) với \(x>0;x\ne1\)
\(x\ge0;x\ne1.\)Cho các biểu thức sau:
A= \(\frac{2\sqrt{x}+1}{3\sqrt{x}+1};\)
B= \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
a, Tính giá trị của biểu thức A khi x=\(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\)
b, Rút gọn B c, tìm x để \(\frac{B}{A}>2\)
Cho biểu thức: \(P=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) với ( \(x\ge0;x\ne1\) )
a) Rút gọn biểu thức trên
b) Chứng minh rằng P>0 với mọi \(x\ge0\) và \(x\ne1\)
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Rút gọn:
\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x\ge0;x\ne1\)
A= \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) \(\left(x\ge0;x\ne4\right)\)
B= \(\frac{x\sqrt{x}-1}{x-1}\) \(\left(x\ge0;x\ne1\right)\)
C= \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\) \(\left(x>0;x\ne1\right)\)
D= \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) \(\left(x\ge2\right)\)
E= \(\frac{x+\sqrt{x^2}-2x}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
Cho A = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0,x\ne1\)
a, Rút gọn A
b, Tìm GTLN của A