Tìm số nguyên dương \(n\) sao cho:
\(C^0_n+2.C^1_n+4.C^2_n+...+2^n,C^n_n=243\)
Sử dụng đường tròn lượng giác hãy viết ghép chung lại số đo hai cung lượng giác sau
a) \(\frac\pi3+k2\pi \) và \(\frac{4\pi}{3}+k2\pi\)
b) \(\frac{2\pi}{3}+k\pi\) và \(\frac\pi3+k\pi\)
c) \(\frac{\pi}{12}+\frac{k\pi}{2}\) và \(\frac\pi3+\frac{k\pi}{2}\)
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho a, b, c là ba số thực dương thõa mãn abc=1. CMR
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
cho phương trình \(\left(m+1\right)x^2-2\left(m+1\right)x-1+2m=0\)
a. giải phương trình khi m=-1
b. Tìm m để phương trình có hai nghiệm dương phân biệt
cho x,y là 2 số thực dương thỏa mãn x+y=2
tìm Min P = \(\frac{x^2+y^2}{\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{1}{xy}\)
Biểu thức \(P=\dfrac{\left(1-tan^2x\right)^2}{4tan^2x}-\dfrac{1}{4sin^2xcos^2x}\) có giá trị không phụ thuộc biến \(x\). Khi đó phương trình ẩn \(y\) sau đây có bn nghiệm dương: \(y^2-3y+P=0\)
Cho 2 đường thẳng d1: y=mx-4 và d2: y=-mx-4. Gọi S là tập hợp các giá trị nguyên dương của m để tam giác tạo thành bởi d1, d2 và trục hoành có diện tích lớn hơn 8. Số phần tử của tập S là ?
Cho a,b,c là những số thực dương . CMR
\(a^2+b^2+c^2\le2\left(\frac{a^3}{a+b}+\frac{b^3}{b+c}+\frac{c^3}{c+a}\right)\)