Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thanh Tùng

Cho HPT : x+y=2(m-1) và 2x-y=m+8 .Biết hệ có nghiệm duy nhất (x;y) thì giá trị nhỏ nhất của x^2 +y^2 là bao nhiêu ?

Thảo Vi
1 tháng 2 2021 lúc 21:04

\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)

Từ (1) ⇒ \(y=2\left(m-1\right)-x\)

Thay vào (2), ta có:

\(2x-2\left(m-1\right)+x=m+8\)

\(\Leftrightarrow3x-2m+2=m+8\\ \Leftrightarrow3x=3m+6\\ \Leftrightarrow x=m+2\)

\(\Rightarrow y=2\left(m-1\right)-\left(m+2\right)\\ \Leftrightarrow y=2m-2-m-2\\ \Leftrightarrow y=m-4\)

Ta có:

 \(x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2\\ =m^2+4m+4+m^2-8m+16\\ =2m^2-4m+20\\ =2\left(m-1\right)^2+18\)

\(Vì\left(m-1\right)^2\ge0\forall m\in R\\ \Rightarrow2\left(m-1\right)^2+18\ge18\\ \Rightarrow x^2+y^2\ge18\)

Dấu "=" xảy ra ⇔ \(m=1\)


Các câu hỏi tương tự
Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Kim Hạ
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Ngưu Kim
Xem chi tiết