Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên \(OA = OB = OC = OD = \frac{{AC}}{2}\).
Do đó, 4 điểm A, B, C, D cùng thuộc đường tròn đường kính AC.
Vậy đường tròn ngoại tiếp hình vuông ABCD là đường tròn có bán kính bằng nửa độ dài đường chéo trong hình vuông ABCD.
Áp dụng định lí Pythagore trong tam giác vuông ABC, ta có:
\(AC^2 = AB^2 + BC^2 = 3^2 + 3^2 = 18\)
\(AC = \sqrt {18} = 3 \sqrt 2\)
Suy ra bán kính là: \(\frac{3 \sqrt 2}{2}\)
Đúng 0
Bình luận (0)