Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Câu 4:
1) Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho góc IOM=90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN.
a) Chứng minh: △BIO=△CMO và tính diện tích tứ giác BIOM theo a.
b) Chứng minh: góc BKM =góc BCO.
c) Chứng minh: \(\frac{1}{CD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\).
1.Cho tam giác ABC có đường trung tuyến AM. Điểm D thuộc đoạn thẳng BM, Từ D kẻ tia song song với AM và cắt cạnh AB, và tia CA lần lượt tại E và F. Lấy điểm I trên đoạn thẳng FE sao cho AI// BC, điểm G trên cạnh AC sao cho EG//BC. AM cắt EG tại K. Cm:
a) K là trung điểm của EG.
b) A là trung điểm FG và I là trung điểm FE.
2. Cho hình thang ABCD( đáy AB, CD; AB<CD). Gọi O là giao điểm hai đường chéo . Đường thẳng qua O và song song với 2 đáy cắt AD và BC lần lượt tại I và K. Chứng minh
a) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{1}{OI}\)
b) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{2}{KI}\)
Cho hình thoi ABCD có ∠A =120o. Gọi M là điểm thuộc canh AB . Các đường thẳng DM và BC cắt nhau tại N.
a) Chứng minh: AB2= AM.CN
b) Gọi E là giao điểm cuả tia CM với AN. Tính ∠AEC
c) Trên tia đối của tia BD lấy điểm F sao cho FM cắt AD, AC lần lượt tại S, K. Chứng minh: \(\frac{DA}{SA}\)+\(\frac{AB}{AM}\)=\(\frac{AC}{AK}\)
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)