Cho hình thoi ABCD, lấy E trên BC, F trên CD, sao cho BE = BF. Gọi I,K theo thứ tự là giao điểm của AE;AF với đường chéo BD. Chứng minh rằng : AICK là hình thoi .
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 2. Cho hình bình hành ABCD có AB AC . Gọi I là trung điểm của BC , trên tia AI lấy điểm
E sao cho I là trung điểm của AE .
2.1. Chứng minh ABEC là hình thoi.
2.2. Chứng minh D C E ; ; thẳng hàng.
2.3. Tính số đo DAE
Bài 3. Cho hình bình hành ABCD có AB bằng đường chéo AC . Gọi O là trung điểm của BC trên tia
AO lấy điểm E sao cho O là trung điểm của AE . Đường thẳng vuông góc với AE tại E cắt AC tại
F.
3.1. Chứng minh ABEC là hình thoi
3.2. Chứng minh tứ giác ADFE là hình chữ nhật
3.3. Vẽ AI CD tại I . Chứng minh rằng nếu AI AO thì AC BD và ABO 60
Bài 4. Cho hình bình hành ABCD .Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho
AM DN . Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
4.1. Chứng minh AB là đường trung trực của EF .
4.2. Chứng minh tứ giác MEBF là hình thoi.
4.3. Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Bài 5. Cho tam giác ABC cân tại A. Đường trung tuyến AM , trên tia AM lấy điểm D sao cho M là
trung điểm của AD .Gọi K là trung điểm của MC ,trên tia DK lấy điểm E sao cho K là trung điểm của
ED .
5.1. Chứng minh tứ giác ABDC là hình thoi .
5.2. Chứng minh tứ giác AMCE là hình chữ nhật.
5.3. Gọi I là giao điểm của AM và BE . Chứng minh I là trung điểm của BE .
5.4. Chứng minh rằng: AK ; CI ; EM đồng quy.
Cho hình thoi ABCD có góc A bằng 60 độ. Trên các cạnh AB và BC lần lượt lấy hai điểm E và F sao cho BE+BF=BD. Chứng minh rằng ΔDEF đều.
Cho hình thoi ABCD có góc A bằng 60 độ. Trên các cạnh AB và BC lần lượt lấy hai điểm E và F sao cho BE+BF=BD. Chứng minh rằng ΔDEF đều.
Cứu
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?
Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD = CE/ Gọi M, N, I, K theo thứ tự là trung điểm của BE, CD, DE, BC.
Chứng minh rằng IK vuông góc với MN ?
Cho hình thoi ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
Chứng minh EFGH là hình bình hành
Cho hình bình hành ABCD, các đường chéo cắt nhau ở O. Gọi E, F, G, H theo thứ tự là giao điểm của các đường phân giác của các tam giác AOB, BOC, COD, DOA.
Chứng minh rằng EFGH là hình thoi ?