Hình thoi ABCD cạnh a có góc  = 60o . Một đường thẳng bất kì qua C cắt tia đối của các tia BA và DA lần lượt tại M và N .
a) Chứng minh : BM . DN có giá trị không đổi .
b) Tính số đo góc BKD , biết K là giao điểm của BN và DM .
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O. Điểm I nằm giữa A và B, điểm M thuộc cạnh BC sao cho góc IOM= 90 độ.
1) CM: BI=CM.
2) Gọi N là giao điểm của tia AN và tia DC, K là giao điểm của BN và tia OM. Chứng minh: OM.MK=BM.MC.
3) Chứng minh: 1/CD^2=1/AM^2+1/AN^2
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Bài 1: Cho hình bình hành ABCD. Trên BD lấy điểm E, gọi F là điểm đối xứng với C qua E. Qua F, kẻ Fx song song với AD, Fy song song với AB; Fx cắt AB tại I, Fy cắt AD tại K. Chứng minh rằng: I, K, E thẳng hàng
Bài 2: Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song với BC. Qua B kẻ đường thảng BI song song với AB. BI cắt AC ở F, AK cắt BD ở E. Chứng minh rằng:
a) EF // AB;
b) AB^2 = CD. EF
Bài 3: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng qua D và song song với EF cắt AC ở I. Đường thẳng qua B và song song với EF cắt AC ở K. Chứng minh rằng:
a) AI = CK
b) AB/AE + AD/AF = AC/AN ( N là giao điểm của EF và AC)
Bài 4: Cho hình bình hành AABCD. Đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng:
a) DM2 = MN.MK
b) DM/DN + DM/DK = 1
Bài 5: Cho hình thoi ABCD. Qua C kẻ đường thẳng d cắt các tia đối của các tia BA, CA theo thứ tự ở E và F. Chứng minh rằng:
a) EM/AB = AD/DF
b) EBD đồng dạng với BDF;
c) Góc BID bằng 120 độ ( I là giao điểm của DE và BF)
Bài 6: Cho cân tại A có BC = 2a. M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho
CMR: Tích BD.CE không đổi
CMR: DM là phân giác của góc
Tính chu vi của AED nếu ABC đều
Bài 7: Cho ( AB khác AC) Gọi E và F theo thứ tự là các hình chiếu của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng FB và CE. Chứng minh rằng: AK là tia phân giác của góc ngoài tại đỉnh A của
Bài 8: Cho hình thang ABCD( AB //CD). M là trung điểm của cạnh CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh rằng: IK//AB
b) Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. Chứng minh IE = IK = KF
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất