Cho hình thang vuông MNEF vuông tại M và F, EF là đáy lớn. Hai đường chéo ME và NF vuông góc với nhau tại O.
1) Cho biết MN = 9 cm, MF = 12 cm.
a) Giải tam giác MNF.
b) Tính độ dài các đoạn thẳng MO, FO.
c) Kẻ NH vuông góc với EF tại H. Tính diện tích tam giác FNE. Từ đó tính diện
tích tam giác FOH.
2) Chứng minh \(MF^2=MN.FE\)
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
Cho tam giác ABC vuông tại 4, có đường cao AH. Từ H kẻ HE vuông góc với ARURE, ke HF vuông góc với AC tại F. | Cho biết AB = 3cn , hat ACB = 30 deg Tính độ dài các đoạn 4C, HAI b. Chứng minh. BE BA+CFC4+2HF HC = B * C ^ 2 c Biết HC-6 cm. Tính giá trị lớn nhất của diện tích tứ giác AEHF.
Cho hình vuông ABCD và M thuộc BC , Kéo dài AM cắt DC tại N . Qua A kẻ đường thẳng vuông góc AM cắtCB tại E.C/m
1)AE=AN
2)\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Cho tam giác ABC vuông tại A, đường cao AH, phân giác AD. Biết AC - 12cm, AB = 9cm
a, Tính độ dài các đoạn BD, CD
b, Tính sin ADH, từ đó suy ra số đo góc ADH (làm tròn đến phút)
1> cho tam giác ABC vuông tại A , đường cao AH , AB=15cm , AC = 20cm . Gọi E là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE . Tính SABCD ?
2> Cho hình thang ABCD, A=D=90 độ, AC vuông góc với BD viết AD = 3\(\sqrt{13}\)
OD = 9cm , ( O là giao điểm của AC và BD ) a) Tính AC , BD , AO b) Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N . Tính MNCho hình thoi ABCD với góc A bằng 135 độ. Tia à tạo với tỉa AB một góc BAx bằng 22,5 độ và cắt cạnh BC tại M, cắt đường thẳng CD tại N. Chứng minh 1/AM2 + 1/AN2 = 1/2AB2
Từ điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC. Vẽ cát tuyến AKD sao cho dây BD//AC. Từ K ta kẻ lần lượt các chân đường vuông góc đến AB.BC.AC tại E, F, I
a) CM tứ giác AEKI nội tiếp
b) CM: FK^2=IK.KE
c) Cho góc BAC=60. CMR: A,O,D thẳng hàng
Cho \(\Delta ABC\) vuông tại A, có \(\dfrac{AB}{AC}=\dfrac{4}{5}\) và đường cao AH = 12cm. Tính độ dài đoạn thẳng BH