cho hình thang vuông ABCD (A=D=90) tia phân giác của góc C đi qua trung điểm I của AD.
a) CMR: BC là tiếp tuyến của đường tròn (I;IA)
b) Cho AD=2a.Tính tích của AB và CD theo a.
c) gọi H là tiếp điểm của BC với đường tròn (I) nói trên.K là giao điểm của AC và BD.CMR KH // DC
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
cho đường tròn tâm O đường kính AB và điểm C bất kì trên nửa đường tròn sao cho AC<CB. gọi C' là điểm đối xứng của C qua AB và D là giao điểm cuả 2 tia BC, C'A. gọi K là chân đường vuông góc từ D đến Ab và D' à giao điểm của CA và DK
a.cm CD.BH=HC.CD' (H là giao điểm của MC' với AB)
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ hai tiếp tuyến SA và SA' (A và A' là tiếp điểm) và cát tuyến SBC (B nằm giữa C và S) với đường tròn. Phân giác của góc BAC cắt BC tại D, cắt đường tròn tại E. Gọi H là giao điểm của OS và AA', G là giao điểm của OE và BS, F là giao điểm của AA' và BC
a) Tam giác SAD là tam giác gì? Vì sao?
b) Cm SF . SG = SO . SH
c) SA^2 = SF . SG
Cho đường tron tâm O bán kính R , dây BC khác đường kính . Hai tiếp tuyến của đường tròn O bán kính R tại B và C cắt nhau tại A . Kẻ đường kính CD , kẻ BH vuông góc với CD tại H .
a , CMR 4 điểm A , B , O , C cùng thuộc 1 đường tròn . Xác đinh tâm và bán kính của đường tròn đó .
b , CMR AO vuông góc với BC . Cho biết R = 15 cm , BC = 24 cm . Tính AB , OA
c , CMR BC là tia phân giác của góc ABH .
d , Gọi I là giao điểm của AD và BH , E là giao điểm của BD và AC . CMR IH = IB .