Bài 3: Hình thang cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không Tên

cho hình thang MNPQ ( MN là đáy nhỏ) hai đường chéo MP và NQ cắt nhau tại O. Biết NMP=MNQ , qua O vẽ đường thẳng EF // PQ (E thuộc MQ, F thuộc NP) chứng minh NMQP, FEQP , MNFE là hình thang cân

missing you =
12 tháng 8 2021 lúc 20:00

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 20:00

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân


Các câu hỏi tương tự
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Chanhh
Xem chi tiết
quyen nang nang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết