Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng vecto md+me+mf=3/2mo( k dùng phương pháp kẻ song song ạ)
Cho hình bình hành ABCD , M là trung điểm BC , N thỏa mãn vecto NC = 2 ND .
a Biểu thị vecto DM ,MN theo 2 vecto AB , AD
b Biểu thị vecto MN theo vecto AC và BD
Cho M,N,I là trung điểm của AB,CD,MN
CHỨNG MINH: 1) vecto MN = 1/2 ( vecto AC + vecto BD) = 1/2 (vecto AD + vecto BC)
2) vecto AD + vecto BD + vecto AC + vecto BC = 4 vecto MN
Cho tứ giác ABCD. Gọi M, N, J lần lượt là trung điểm của các cạnh AD, BC, AC và BD. Chứng minh rằng : vecto MA +vecto IJ = vecto NB
Bt: Cho 4 điểm A,B,C,D. Gọi M và N lần lượt là trung điểm của AB, CD, O là trung điểm của MN. Chứng minh rằng vs điểm S bất kì, ta có vtSA+vtSB+vtSC+vtSD=4vtSO
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng :
\(2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{AD}\)
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của AB, AC và BC. Gọi I là trung điểm của MN. Đặt vecto u = vecto AB , vecto v = vecto AC
a) Hãy phân tích vecto AI theo hai vecto u và v
b) Hãy phân tích vecto EI theo hai vecto u và v.
Bài 3: Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho vecto CN =2 vecto NA . K là trung điểm của MN. Chứng minh:
a) Vecto AK=1/4 vectoAB+1/6 vecto AC
b)
vecto KD=1/4 vecto AB+1/3 vecto AC
cho tứ giác ABCD có I,J lần lượt là trung điểm của AB và CD và O là trung điểm của I,J. Chứng minh OA+OB+OC+OD= vecto 0
giúp mik với ạ