cho hình thang ABCD( AB//CD và AB<CD) . gọi O là giao điểm 2 cạnh bên AD và BC. Qua O kẻ đường thẳng song song với 2 cạnh đáy, đường thẳng này cắt Ac tại M, cắt BD tại N. Chừng minh rằng OM=ON
Cho hình thang ABCD (AB // CD, AB < CD). Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) DK = CI
b) EF // CD
c) AB2 = CD.EF
Bài 15: Cho tam giác ABC có AD là phân giác của góc BAC (D ϵ BC). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AC, AB tại E và F.
a) Chứng minh tứ giác AEDF là hình thoi.
b) Trên tia AB lấy điểm G sao cho F là trung điểm của AG. Chứng minh tứ giác EFGD là hình bình hành.
c) Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.
Cho hình thang ABCd (AB//CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD,BC theo thứ tự ở E,F
Chứng minh rằn:\(\frac{AE}{AD}+\frac{CF}{BC}=1\)
Cho tam giác ABC có AB=3cm , AC=4cm, BC=5cm.Đường phân giác góc A cắt BC tại D.Qua D vẽ đường vuông góc với BC cắt AC tại E và BA tại K.
a) CM tam giác ABC vuông
b) tính DB, DC
c) CM tam giác EDC đồng dạng tam giác BDK
d)chứng minh DE=DB
cho tam giác ABC góc A bằng 90 độ . gọi E,G,F là trung điểm của AB, BC, AC . từ E kẻ đường song song với BF , đường thẳng này cắt GF tại I
a) tứ giác AEGF là hình bình hành
b) tứ giác BEIF là hình bình hành
c) tứ giác AGCI là hình thoi
Cho O là trung điểm của đoạn Trên cùng một nửa mặt phẳng có bờ là đường thẳng vẽ tia cùng vuông góc với AB. Trên tia lấy điểm C (khác A), qua kẻ đường thẳng vuông góc với cắt tia By tại D.
a,Chứng minh
b,Kẻ vuông góc CD tại M. Chứng minh
c,Từ M kẻ vuông góc AB tại I. Chứng minh đi qua trung điểm MH.
Cho tam giác DEF vuông tại D (DE<DF). Gọi B là trung điểm của EF. Qua B vẽ BA vuông góc với DE tại A và BC vuông góc với DF tại C
a. Chứng minh rằng tứ giác ABCD là hình chữ nhật
b. Cho AD =2cm, DC=3cm. Tính diện tích hình chữ nhật ABCD và diện tích tam giác DEF.
c. Gọi M là điểm đối xứng với B qua C, đường thẳng EC cắt MF tại N. Chứng minh rằng MN=\(\dfrac{1}{3}\) MF
Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng với A qua D.
a) Chứng minh rằng tứ giác DBCE là hình bình hành
b) Gọi F là điểm đối xứng với C qua D. Chứng minh rằng tứ giác ACEF là hình thoi.
c) Vẽ EH vuông góc với AC tại H, EH cắt CD tại K, AK cắt CE tại I. Gọi M là giao điểm của AI và BD. Chứng minh IM.BD = DI.BI.