Sửa đề: Tính diện tích hình thang ABCD
Ta có: \(\frac{S_{BOC}}{S_{DOC}}=\frac{OB}{OD}\)
=>\(\frac{OB}{OD}=\frac{12}{24}=\frac12\)
Ta có: AB//CD
=>\(\frac{OA}{OC}=\frac{OB}{OD}=\frac12\)
\(\frac{OA}{OC}=\frac12\)
=>\(\frac{S_{AOB}}{S_{BOC}}=\frac{OA}{OC}=\frac12\)
=>\(S_{AOB}=\frac{12}{2}=6\left(\operatorname{cm}^2\right)\)
Vì \(\frac{OB}{OD}=\frac12\)
nên \(\frac{S_{AOB}}{S_{AOD}}=\frac12\)
=>\(S_{AOD}=2\times S_{AOB}=12\left(\operatorname{cm}^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{COD}+S_{DOA}\)
\(=6+12+12+24=30+24=54\left(\operatorname{cm}^2\right)\)
.png)
