Cho △ABC có AD là tia phân giác trong của góc A. Qua D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F
a) AEDF là hình gì ? Vì sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh :MN // EF
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC a/ Chứng minh tứ giác OHDE nội tiếp b/ Chứng minh ED^2=EC.EB c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN
Tam giác ABC. Phân giác AD, trung tuyến AM. Qua D kẻ đường thẳng song song với AB cắt AM ở I. BI cắt AC tại E. Chứng minh AB = AE
Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM, cắt AB,AC tại E,F
a) Chứng minh DE+DF không đổi khi D di động trên BC
b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. CMR K là trung điểm của FE
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC.
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh \(ED^2=EC.EB\)
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC, điểm D thuộc cạnh AB, E thuộc cạnh AC. Gọi I, M lần lượt là trung điểm của DE, BC. Đường thẳng qua I và song song với AB cắt MD ở G. Đường thẳng qua I song song với AC cắt ME ở H. Chứng minh GH//BC.
Help me!!
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tứ giác lồi ABCD ( \(\widehat{A}< 90^0< \widehat{C}\) ), có M là điểm di động trên đường chéo BD. Qua M lần lượt vẽ đường thảng song song với BC và CD cắt AB,AD theo thứ tự tại E,F. Vẽ hình bình hành MEKF . Qua B vẽ đường thảng song song với MF , cắt AD tại P.Qua D vẽ đường thẳng song song với ME, cắt AB tại Q.
a ) Cm \(\Delta QEK\sim\Delta QBP\)
b ) Khi M di động trên đường chéo \(BD\) thì điểm K chạy trên dường nào .
Dúp nhé mọi người .