cho hình thoi ABCD (BD<AC). gọi o là giao điểm của AC và BD. I là điểm bất kỳ trên AO. đường thẳng qua I song song với AB cắt AD và BC lần lượt tại M và P. đường thẳng qua I song song với AD cắt AB và CD lần lượt tại N và Q.
a) chứng minh tứ giác AMIN và CPIQ là hình thoi
b) tính diện tích tam giác ABC nếu biết AB=5cm và BD=6cm
c)tứ giác MNPQ là hình gì? tìm vị trí của I đề MNPQ là hình chữ nhật
mong mọi người giúp em ạaa><
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
Cho hình thang cân ABCD(AB//CD).Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,AD
a,Đoạn thẳng MN,NP lần lượt là các đường trung bình của tam giác nào ?Vì sao?
b,Chứng minh: MP⊥NQ
Giups mik vs mik đang cần gấp
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình bình hành ABCD. Một đường thẳng d cắt AB, BC, BD lần lượt tại M,N,I. Chứng mình: \(\frac{BA}{BM}\)+\(\frac{BC}{BN}\)=\(\frac{BD}{BI}\)
Ai giúp mình với mình đang cần rất gấp đề khó quá ai biết giúp mình mk cảm ơn nhiều!
Cho hình bình hành ABCD, trên các cạnh AB,CD lần lượt lấy các điểm M,N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN tại E,F. Chứng minh rằng:
a, E và F đối xứng qua AB
b, MEBF là hình thoi
c, Hình bình hành ABCD phải có điều kiện gì để BCNE là hình thang cân?
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N∈∈AC), DM // AC. (M∈∈AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH ⊥⊥ MN, AH cắt BC tại E. CM: BE = EC