Cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC và N là giao điểm của 2 đường chéo. Đường thẳng MN cắt AB và CD lần lượt tại I và K. Chứng minh I là trung điểm của AB, K là trung điểm của CD
Cho hình thang ABCD có AB= 2/3CD(AB//CD). E.F lần lượt là trung điểm của AB và CD. M là giao điểm của DE và AF.N là giao điểm của BF và CE. Tính S(EMFN) theo S(ABCD)
Cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đường chéo. Gọi I và K theo thứ tự giao điểm của MN với AB và CD. Chứng minh rằng I là trung điểm của AB, K là trung điểm của CD.
Vẽ hình và giải giúp mình với
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình thang ANCD. Gọi M,N là trung điểm của AD và CD. Gọi I,K là giao của MN với BD và AC.
CMR: IK = CD - AB
Cho hình thang cân ABCD(AB//CD,AB<CD). Gọi O là giao điểm của AC và BD, I là giao điểm AD và BC. Gọi M,N lần lượt là trung điểm của AB, CD
a)CM: OA=OB,OC=OD
b)CM:I,M,O,N thẳng hàng
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy