a, áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
hay 32 + AC2 = 52
=> AC2 = 52 - 32
=> AC2 = 16
=> AC = 4 (cm)
Vậy AC = 4 cm
a, áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
hay 32 + AC2 = 52
=> AC2 = 52 - 32
=> AC2 = 16
=> AC = 4 (cm)
Vậy AC = 4 cm
cho hình tam giác vuông ABC, AB = 3cm ; BC = 5cm :
a)tính AC.
b)Trên tia đối của AB lấy điểm D sao cho AB=AD.Chứng minh tam giác ABC=tam giác ADC và tam giác BCD cân.
c) trên AC lấy E sao cho AC=3AE. Chứng minh đường thẳng DE đi qua trung điểm I của BC.
d) chứng minh rằng DI+3/2DC>DB
cho hình tam giác vuông ABC, AB = 3cm ; BC = 5cm :
a)tính AC.
b)Trên tia đối của AB lấy điểm D sao cho AB=AD.Chứng minh tam giác ABC=tam giác ADC và tam giác BCD cân.
c) trên AC lấy E sao cho AE=1/3 AC. Chứng minh đường thẳng DE đi qua trung điểm I của BC.
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC,trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy E sao cho AD = AB ; AE=AC
a ) Chứng minh DC = DE
b ) chứng minh BC // DE
c ) đường thẳng xy qua A cắt BC ; DE lần lượt tại M và N. Chứng minh A là trung điểm của MN.
Cho tam giác ABC vuông tại A và AB < AC . Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh DE = BC
b) Chứng minh DE vuông góc với BC.
c) Biết 4gócB = 5gócC. Tính góc AED
1. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh tam giác ABC = tam giác CDA.
2. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh AB = CD.
3. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AC, AF = AC. Chứng minh tam giác ABC = tam giác AFE.
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.
Cho tam giác ABC có AB<AC trên cạnh AC lấy điểm D sao cho AD = AB gọi M là trung điểm của đoạn BD:
a) TM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
b)Trên tia đối của tia BA lấy điểm E sao cho BE=DC Chứng minh rằng ba điểm E,K,D thẳng hàng
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.