Do \(AC||A'C'\Rightarrow\widehat{\left(A'C';B'C\right)}=\widehat{\left(AC;B'C\right)}=\widehat{ACB'}\)
\(AC=AB'=B'C=AB\sqrt{2}\Rightarrow\Delta ACB'\) đều
\(\Rightarrow\widehat{ACB'}=60^0\)
Do \(AC||A'C'\Rightarrow\widehat{\left(A'C';B'C\right)}=\widehat{\left(AC;B'C\right)}=\widehat{ACB'}\)
\(AC=AB'=B'C=AB\sqrt{2}\Rightarrow\Delta ACB'\) đều
\(\Rightarrow\widehat{ACB'}=60^0\)
Cho hình lập phương ABCD.A'B'C'D'. Gọi M,N lần lượt là trung điểm của AB, B'C'. Góc giữa hai đường thẳng DM và A'N bằng A. 90° B. 60° C. 45° D. 30°
cho hình lập phương ABCD.A'B'C'D' có cạnh a. Gọi O là tâm ABCD; M,N lần lượt là trung điểm AB,AD.
1. BD vuông góc (ACC'A') và A'C vuông góc(BDC'), A'C vuông góc AB', (BDC') vuông góc(ACC'A') và (MNC) vương góc (ACC'A')
2. Tính d(C,(BDC')),d(C,(MNC'))
3. Tính tan(AC,(MNC')) và tan((BDC'),(ABCD))
4. Tính cosin((MNC'),(BDC'))
5. Tính d(AB',BC')
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc AC. Gọi M là trung điểm AB và SM= \(\dfrac{a}{\sqrt{2}}\) Tính số đo góc giữa 2 đường thẳng AC và MS
Cho lập phương ABCD.A'B'C'D' có độ dài các cạch bằng 1. Xét M trên cạnh AD và N trên canh BB' sao cho \(\frac{AM}{MD}=\frac{B'N'}{NB}\)
Chứng minh răng \(MN\perp A'C\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA = \(a\sqrt{2}\), góc giữa đường thẳng SC và mặt phẳng đáy bằng 45o. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB.
Help me!!!!
Gấp lắm ạ
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A AB = SA = SB =SC = 2. Tính góc giữa hai đường thẳng AB và SC.
Cho hình lập phương ABCD.A'B'C'D'.
(AC;B'D')=?
(AD'AB')=?
(AD'DC')=?
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a tâm O,SA vuông (ABCD) và SA=a√6 a)tính khoảng cách từ A đến mp (SBC) b) tính góc giữa đường thẳng SC và mp (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)