Lời giải:
a) Xét tam giác $ADH$ và $BDA$ có:
$\widehat{AHD}=\widehat{BAD}=90^0$
$\widehat{D}$ chung
$\Rightarrow \triangle ADH\sim \triangle BDA$ (g.g)
$\Rightarrow \frac{AD}{BD}=\frac{DH}{DA}\Rightarrow DA^2=BD.DH$ (đpcm)
b) Xét tam giác $AHD$ và $ABC$ có:
$\widehat{AHD}=\widehat{ABC}=90^0$
$\widehat{ADH}=\widehat{ADB}=\widehat{ACB}$ (tính chất hcn)
$\Rightarrow \triangle AHD\sim \triangle ABC$ (g.g)
c)
Xét tam giác $MAD$ và $NAC$ có:
$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{ACN}$
$\frac{AD}{AC}=\frac{HD}{BC}=\frac{HD:2}{BC:2}=\frac{MD}{NC}$ (do tam giác đồng dạng phần b)
$\Rightarrow \triangle MAD\sim \triangle NAC$ (c.g.c)
$\Rightarrow \widehat{MAD}=\widehat{NAC}$
d)
Tam giác đồng dạng phần b cho ta $\widehat{DAH}=\widehat{CAB}$
Tam giác đồng dạng phần c cho ta $\widehat{DAM}=\widehat{CAN}$
$\Rightarrow \widehat{DAH}-\widehat{DAM}=\widehat{CAB}-\widehat{CAN}$
hay $\widehat{MAH}=\widehat{NAB}$
$\Rightarrow \widehat{MAN}=\widehat{HAB}$
Xét tam giác $AHB$ và $AMN$ có:
$\widehat{HAB}=\widehat{MAN}$
$\frac{AM}{AN}=\frac{AD}{AC}=\frac{AD}{BD}=\frac{AH}{AB}$ (từ tam giác đồng dạng phần c và a)
$\Rightarrow \triangle AHB\sim \triangle AMN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{AHB}=90^0$