Cho hình chữ nhật ABCD có AB=mAD (m>0) . Qua A kẻ đường thẳng cắt đoạn BC và đường thẳng DC lần lượt tại M,N .CMR:
\(\dfrac{m^2}{AB^2}=\dfrac{m^2}{AM^2}+\dfrac{1}{AN^2}\)
Bài 1: Cho hình vuông ABCD. Kẻ đường thẳng qua A cắt BC tại M và cắt CD tại I. CMR: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AI^2}\)
Bài 2: Cho ΔABC cân tại A có đường cao AH và BK. CMR: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Bài 3: Cho ΔABC có \(\widehat{A}=60^0\), đường cao BD và CE. Gọi M là trung điểm của BC. CMR: ΔDEM là tam giác đều
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M. Đường thẳng vuông góc với AM tại A cắt đường thẳng CD tại N.
a. Chứng minh AM=AN.
b. Gọi gia điểm của đường thẳng AM với đường thẳng CD là I. Chứng minh \(\dfrac{1}{AM^2}+\dfrac{1}{AI^2}=\dfrac{1}{AB^2}\)
Giúp mình nha!
Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
1. Cho ABCD là hình thang vuông tại A và D. Đường chéo BD vuông góc với BC. Biết AD=12 cm, DC=25 cm. Tính độ dài AB,BC và BD
2. Cho hcn ABCD vẽ AH vuông góc với BD tại H. Đường thẳng AH cắt BC và DC lần lượt tại I và K. C/m \(AH^2=HI.HK\)
3. Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Cho biết khoảng cách từ O tới mỗi cạnh hình thoi là h, AC=m, BD=n. C/m \(\dfrac{1}{m^2}+\dfrac{1}{n^2}=\dfrac{1}{4h^2}\)
4. Cho tam giác ABC cân tại A có AH và BK là hai đường cao. Kẻ đường thẳng vuông góc với BC tại B cắt tia CA tại D. C/m: BD=2AH
Cho hình vuông ABCD kẻ đường thẳng qua A cắt BC tại E và đường thẳng CD tại F
Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AE^2}=\dfrac{1}{AF^2}\)
1. Cho hình vuông ABCD. Đường thẳng đi qua A cắt BC và CD lần lượt tại M và I. CM rằng:\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AI^2}\)
2. Cho hình chữ nhật ABCD; sin của góa DAC =0,8; AD =42 mm, kẻ CE ⊥ BD và DF⊥AC
a. AC cắt BD ở O, tính sin của góc AOD
b. CM tứ giác CEFD là hình thang cân và tính diện tích của nó
c. Kẻ AG ⊥ BD và BH ⊥ AC, CM tứ giác EFGH là hình chữ nhật và tính diện tích of nó
Bài 2: Cho ΔABC có AB=6cm, AC=8cm, BC=10c, Kẻ đường cao AH của ΔABC.
a) Tính độ dài AH và BH
b)AH=BC.sinB.cosB
c) lấy điểm M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là E và K. Chứng minh : \(\dfrac{1}{AM^2}+\dfrac{1}{AK^2+AE^2}\)
d) Hỏi M ở vị trí nào trên cạnh BC thì EK có độ dài nhỏ nhất
Tam giác ABC vuông tại A ( AB < AC ) , đường cao AH . Lấy M thuộc HC sao cho : HM = AH . Qua M kẻ đường thẳng vuông góc với AB cắt AC tại D .
Chứng minh : \(\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)