Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Khánh Huyền

Cho hình chữ nhật ABCD có AB = 8cm; BC = 6cm. Kẻ BH
vuông góc với AC tại H, DM vuông góc với AC tại M.
a) Chứng minh ∆ABH đồng dạng với ∆ACB và suy ra AC.AH=AB2
b) Tính độ dài các đoạn thẳng AC, BH, CH.
c) Gọi I là điểm đối xứng với B qua AC. Chứng minh DM = IH và ACID là hình
thang cân.
d) Gọi E, F lần lượt là trung điểm của AH, CD và K là giao điểm của BF với AC.
Chứng minh rằng BF.EK≥BE.EF

Nguyễn Trần Đan
10 tháng 5 2019 lúc 21:04

. Vẽ hình ra nha bạn

a, *△ABH và △ACB có

góc BHA = góc CBA= 90 độ

góc BAH= góc CAB ( góc chung)

⇒ 2 tam giac đồng dạng

*⇒ BA/CA=AB/AH ⇒ AB2=AC. AH

b,* AC=\(\sqrt{AB^2+BC^2=\sqrt{8^2+6^2}}=10\)

. *BH=\(\sqrt{\frac{AB^2+BC^2}{\left(AB.AC\right)^2}}=\)

. *HC = \(\frac{BC^2}{AC}\)

c,* Xét △AMD = △CHB

⇒ DM=HB

Mà HB=HI ( theo đề )

Suy ra DM=IH

* Ta có :

DH // IH ( do cùng vuông góc AC)⇒ DMHI là hình thang

Mà góc DMH = 90

Suy ra DMHI là hcn ⇒ DI // MH hay DI // AC

Suy ra DICA là hình thang (1)

△ICB có CH là đường cao kẻ từ C

Mà CH cũng là đường trung tuyến ( do HB = HI )

Suy ra △ICB cân tại C ⇒ IC = CB

Mà CB = DA ( do ABCD là hcn )

Suy ra DA = IC (2)

Từ (1) và (2) suy ra DICA là hình thang cân


Các câu hỏi tương tự
phamthiminhanh
Xem chi tiết
Khoa Nguỹen
Xem chi tiết
Khoa Nguỹen
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
phamthiminhanh
Xem chi tiết
Big City Boy
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết
Lil Shroud
Xem chi tiết
Ctuu
Xem chi tiết