a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
mà \(\widehat{PAD}=90^0\)
nên APQD là hình vuông
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
mà \(\widehat{PAD}=90^0\)
nên APQD là hình vuông
Cho hình chữ nhật ABCD có AB = 10cm và AD = 5cm. Gọi P, Q lần lượt là trung điểm của AB, CD.
1. Chứng minh tứ giác APQD và PBCQ là hình vuông.
2. Gọi H là giao điểm của AQ và DP. Gọi K là giao điểm của CP và BQ. Chứng minh PHQK là hình vuông.
Hình chữ nhật ABCD có AB = 2AD. Gọi P, Q theo thứ tự là trung điểm của AB, CD. Gọi H là giao điểm của AQ và DP, gọi K là giao điểm của CP và BQ.
Chứng minh rằng PHQK là hình vuông ?
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE
cho hình bình hành abcd có ab = 2.ad. gọi m, n lần lượt là trung điểm của ab và cd. a) chứng minh tứ giác bmdn là hình bình hành. b) tia dm cắt cb tại i. tứ giác dnbi là hình gì ? vì sao ? c) gọi k là giao điểm của db và ni. chứng minh m, k, c thẳng hàng.
Cho hình bình hành ABCD. Gọi P,Q,R,S lần lượt là trung điểm các cạnh AB,BC,CD,DA. Nối AQ và RB cắt nhau ở I. AQ và DP cắt nhau ở K. CS cắt DP ở N và CS cắt RB ở M.
a) Chứng minh tứ giác PBRD là hbh
b) Tứ giác MNKI là hình gì?
c) Chứng minh KI = 2/5 AQ
d) Tính diện tích tứ giác MNKI biết diện tích hbh ABCD bằng 60cm^2
Cíu với ạaaa
Cho hình vuông ABCD. Gọi điểm E là điểm đối xứng của A qua D
a) Chứng minh ∆ACE vuông cân
b) Từ A hạ AH vuông góc với BE. Chứng minh HD =AD
c) Gọi M, N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác
MNCB là hình bình hành
Cho hình vuông ABCD. Gọi E,F theo thứ tự là trung điểm AB,CD.
a) Tứ giác AECF là hình gì? Vì sao?
b) Gọi H là hình chiếu của D trên CE. Chứng minh AF là đường trung trực của DH và tứ giác AEHF là hình thang cân.
c) DH cắt BC tại K. Chứng minh K là trung điểmBC.
d) FH cắt BC tại G. Tính góc FAG.
Cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABC'D và ACEF. Gọi Q, N lần lượt là giao điểm các đường chéo của ABC'D và ACEF; M, P lần lượt là trung điểm BC và DF. Chứng minh rằng tứ giác MNPQ là hình vuông