\(S.ABCD\) là hình chóp tứ giác đều \( \Rightarrow SO \bot \left( {ABCD} \right)\)
\( \Rightarrow SO \bot AO\)
\(ABC{\rm{D}}\) là hình vuông
\( \Rightarrow AC = AB\sqrt 2 = a\sqrt 2 \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)
Xét tam giác \(SAO\) vuông tại \(O\) có:
\(SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt {14} }}{2}\)