Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa hai mặt bên liền kề nhau.
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a . Tính cosin của góc giữa hai mặt bên không liền kề nhau
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a
a) Tính góc giữa SA và BC
b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC
Cho chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB=4a, AD=3a. Các cạnh bên đều có độ dài 5a. Tính góc giữa (SBC) và (ABCD) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\).. Tính góc giữa hai mặt phẳng (SBD) và (ABCD) ?
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a có góc \(\widehat{BAD}=60^0\) và \(SA=SB=SD=\dfrac{a\sqrt{3}}{2}\) :
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD)
c) Chứng minh SB vuông góc với BC
d) Gọi \(\varphi\) là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính \(\tan\varphi\)
Cho chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, ΔSAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính góc giữa SC và AD ?