Gọi H là trung điểm của AD. Do tam giác SAD là tam giác đều nên SH vuông góc với AD
Do mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) nên SH vuông góc với BP(1)
Xét hình vuông ABCD ta có :
\(\Delta CDH=\Delta BCP\Rightarrow CH\perp BP\) (2)
Từ (1) và (2) ta suy ra \(BP\perp\left(SHC\right)\)
Vì \(\begin{cases}MN||SC\\AN||CH\end{cases}\) \(\Rightarrow\left(AMN\right)||\left(SHC\right)\)
\(\Rightarrow BP\perp\left(AMN\right)\Rightarrow BP\perp AM\)
Kẻ vuông góc với mặt phẳng (ABCD), K thuộc vào mặt phẳng (ABCD), ta có :
\(V_{CMNP}=\frac{1}{3}MK.S_{CNP}\)
Vì \(MK=\frac{1}{2}SH=\frac{a\sqrt{3}}{4};S_{CNP}=\frac{1}{2}CN.CP=\frac{a^2}{8}\)
\(\Rightarrow V_{CMNP}=\frac{\sqrt{3}a^2}{96}\)